Suppression of Powdery Mildew (Podosphaera xanthii) by Compost Tea on Dill’s Atlantic Giant (Cucurbita maxima 'Atlantic Giant') Pumpkin Plants

Matthew DeBacco and Thomas Morris, University of Connecticut, Storrs, CT

Introduction
Compost tea has a long history of use for suppressing diseases of plants. The popularity of compost tea is increasing in both the homeowner and organic areas. There is little scientific research, however, to support the anecdotal evidence for disease suppression.

One suggested mechanism for disease suppression by compost tea include biofilm formation, which is described as, "bacteria adhering to environmental surfaces in multicellular assemblies" (Ramsey et al. 2004). Beneficial microbes from teas may competitively exclude the pathogens by the formation of biofilms. Another suggested mechanism is a change in pH on the leaf surface, which can reduce disease symptoms. However, Fernandes and Hepperly (2006) showed that a milk solution was more effective against powdery mildew than 1% baking soda (NaHCO₃), indicating there are other factors affecting disease suppression than only pH alterations.

The objective of this experiment was to test the effectiveness of actively and passively aerated compost tea for the suppression of powdery mildew on giant pumpkin plants.

Materials and Methods
This study was conducted at the Research Station at the University of Connecticut in Storrs. Giant pumpkins were transplanted at the three leaf stage in a randomized complete block design with two replications. The experiment was located adjacent to a field with many different types of cucurbits to increase the chance that inoculum would be present. Fertilizer was applied based on recommendations from the Soil Test Lab at the university.

5 treatments
1. Control, no treatment
2. Compost Tea (active) applied early in week, and 40% milk applied late in week
3. Compost Tea (active) applied early in week, and Bacteria Brew + 40% milk late in week
4. Compost Tea (passive) applied early in week, and 40% milk applied late in week
5. Chemical control (Dacron’s a.i. Chlorothalonil)

Recipes:
- Compost
- SoilSoup Nutrient Solution 1 oz. per gallon
- Serenade MAX 0.5 tsp per gallon
- SoilSoup Nutrient Solution 1 oz. per gallon
- Milk was added to the finished (12-14 hr.) compost brew made using an air pump to directly add air to the compost-water-dilution. The Bacteria Brew was a distinct brew that was produced by using the Horsfall-Barratt scale. Each plant was visually scored on the Horsfall-Barratt scale.

Dechlorinated water was used for all brews. The compost tea and the milk and bacteria brew were on a 7-10 day spray schedule with the milk and bacteria brew being added every 5 days by using the Horsfall-Barratt scale. Each plant was visually evaluated on three different leaf sample sizes: the single worst leaf, an 8-leaf sample size, and the entire plant.

Results

Visual ratings of powdery mildew for the 8-leaf sample and the single-leaf sample were similar to the ratings for the whole plant shown above. The two actively aerated compost tea treatments showed a significant decrease in disease severity.

This picture was taken in the field in mid-September 2007. The leaf on the left is from a control plot, while the leaf on the right is from the Compost Tea (actively aerated) and 40% milk treatment.

There were large differences in the ability of the treatments to suppress powdery mildew. The control treatment had a high disease rating, which indicates there was a good source of inoculum in this experiment.

Discussion
- The weather in the 2007 growing season had below-normal rainfall and a warmer than average September. Because this field was not irrigated, the plants showed signs of slow growth due to a lack of rain. While severe curling was not noted, the vigor and growth of the plants was reduced. Deer also pruned some of the newer growth and older leaves on some of the plants.
- There was a visually obvious reduction in disease through the use of compost teas. Bacterial augmentation of the compost teas.
- In all leaf sample sizes the disease severity was similar, with the actively aerated compost tea and 40% milk treatment showing the greatest ability to suppress disease.
- Previous research has shown Serenade MAX was an effective suppressant of powdery mildew. The bacteria brew, which included the use of Serenade MAX, did not enhance the effectiveness to suppress disease. This could be because the milk had some detrimental effect on the bacteria.
- Serenade MAX has been reported to reduce powdery mildew when used with a copper-based fungicide, however, copper in the environment has negative effects and was not used for that reason.

Conclusions
- Actively aerated compost tea suppressed powdery mildew better than the passively aerated tea.
- Adding bacteria to the brew did not increase the ability of the tea to suppress disease.
- The fungicide treatment provided the most effective control of powdery mildew, but because we did not measure yields, it is unknown if the fungicide treatment provided a yield benefit compared with the actively aerated compost tea.

Acknowledgments
I would like to thank the University of Connecticut research farm staff, Steve Olsen, Todd Wright and Greg Tormey for their help and also to Judge Boucher his assistance.

References